Where I compare the execution speeds of different combinations of boards and languages. I will continue to update this post with other languages and processor combinations.
ucontroller/Speed(MHz) | Method* | frequency | Language |
---|---|---|---|
ATSAMD21/48Mhz | Integral | .6kHz | CircuitPython |
ATSAMD21/48Mhz | Integral function | .7kHz | CircuitPython |
ATSAMD21/48Mhz | Library | .7kHz | CircuitPython |
RP2040/133Mhz | Integral function | 1.0kHz | CircuitPython |
RP2040/133Mhz | Library | 1.44kHz | CircuitPython |
ATmega328/16MHz | struct/function pointer | 6.1kHz | Arduino C++ |
ATmega328/16MHz | words in an infinite loop | 27KHz | FlashForth |
ATmega328/16MHz | struct/function pointer | 55kHz | C |
ATmega328/16MHz | struct/function pointer | 56kHz | Arduino C++ w/ native toggle |
ATmega328/16MHz | Assembly language toggle | 108kHz | FlashForth |
ATmega328/16MHz | Assembly language toggle inlined | 444kHz | FlashForth |
RP2040/133Mhz | struct/function pointer | 578.7kHz | C |
RP2040/133Mhz | words in an infinite loop | 2.841 MHz | Mecrisp Forth |
*See text for an explanation of method. |
While writing about CircuitPython and the FIDI board, I was curious as to the execution speed of CircuitPython on a extremely powerful (relative to the AVR ATmega328) ARM M0+ microcontroller. The M0+ is a modern RISC 32-bit processor with a considerable amount of memory, while the ATmega is 20 year old RISC 8-bit processor with a limited amount of memory. That said, one can’t run CircuitPython on ATmega processors, one must use C or Forth.
Where I go into detail as to how I develop code in CircuitPython for the omzlo FIDI board.
Where I evaluate an interesting prototyping board using CircuitPython.
I ran across this board, the omzlo FIDI via an Adafruit blog article. I was struck by its size and utility along with its relative powerful processor for its size. From the webpage: